

Aviation Weather Research Program (AWRP)
Overview / Initial UAS Research

UAS Weather Workshop July 19, 2016

Presentation Overview

- AWRP Mission
- Long history of success!
- A sampling of current AWRP research initiatives
- Current UAS Weather Initiative
- Challenges ahead

AWRP Mission

Applied research to minimize the impact of weather on the National Airspace System (NAS)

- The NextGen Implementation Plan contains specific initiatives to support NextGen weather Operational Improvements
- Collaborative, complementary initiatives with NWS to transition legacy capabilities to meet NextGen requirements
- Focused initiatives to help mitigate safety and/or efficiency issues associated with well-documented weather problems

AWRP 15+ Year History of Success

National Convective Wx Forecast, 2001

Rapid Update Cycle (RUC): 40KM, 1998; 20KM, 2002; 13KM, 2005

Current Icing Potential (CIP): original implementation, 2002; Forecast Icing Potential (FIP): original implementation, 2004; FIP Severity, 2011; CIP/FIP RAP, 2012; CIP/FIP High Resolution, 2014

Aviation Digital Data Service (ADDS), 2003

Rapid Refresh (RAP), 2012

CoSPA, 2011

High-Resolution Rapid Refresh (HRRR), 2014

Helicopter Emergency Medical Services (HEMS): Initial Operation on ExADDS, 2007; Operational transition to ADDS, 2015

Graphical Turbulence Guidance (GTG): original implementation, 2003; GTG2 (Mid-Levels), 2010; GTG3 (Mountain Wave, Low Levels), 2015

A shout out to our fantastic partners!

NCAR | National Center for UCAR | Atmospheric Research

METRON

and many more...

Ceiling and Visibility (C&V)

Collaboration with NOAA to:

- Improve C&V analyses in the form of the Real Time Mesoscale Analysis (RTMA)
- Improve Localized Aviation MOS Product (LAMP) forecasts
- Test techniques for forecasters to enhance automated products
- Integrate improvements into the Helicopter Emergency Medical Services (HEMS) tool, TAFs, and TRACON Area Forecasts

Alaska Specific Initiatives

- Even with sophisticated weather applications in the cockpit,
 NTSB statistics show GA accident rates are not falling.
 Inadvertent VFR to IMC, especially in AK, still a big problem
- AWRP looking at specific applications to address GA accident issues in AK
 - CONUS specific products such as GTG and CIP/FIP will not perform well over AK due to model resolution and available observational data
 - New products will leverage different data sets and better address forecast uncertainty
 - Critical need to improve first guess and analysis fields for many aviation impact variables

Alaska Specific Initiatives

- Ceiling and Visibility
 Analysis for Alaska (CVA-AK)—collaboration with
 NCAR, MIT/LL and Alaskan
 Aviation Weather Unit
 (NWS) to:
 - Develop automated C&V analysis product combining surface observations and information from satellites and weather cameras
 - Use as input for numerical model initialization
- Icing Product Alaska

Numerical Modeling

- Supporting NOAA GSD efforts to improve model resolution, accuracy, and refresh rates via advancements in model physics, nested grids, and data assimilation on operational models
- Supporting research and evaluation of new modeling capabilities that have a viable path to NCEP operations including ensembles, global resolution improvements, and more...
- Developed and supported operational implementation of 3km High Resolution Rapid Refresh (HRRR) and RAP v2 at NCEP NCO
- Quantifying benefits of current and future model enhancements to the National Airspace System

Aviation specific research efforts funded at nearly \$8 million over the last 5 years

Timeline – NCEP Models

Turbulence

- Graphical Turbulence Guidance (GTG) upgrades include mountain wave turbulence and low level turbulence diagnostics. Operational on aviationweather.gov
- Develop and evaluate additional turbulence forecast capabilities including convectively induced turbulence (CIT), Alaska-specific and Global coverage products
- Research to enhance the operational capability to remotely sense turbulence (i.e., with satellites and radar)
- In collaboration with Delta Air Lines, provided dispatch and flight crew access to turbulence forecasts and EDR data for strategic and tactical decision making

Turbulence

GTG - Max clear air turbulence (1000 ft. MSL to FL500)

Convective Storms

- Global-scale probabilistic convection forecast guidance out to 36 hours to support strategic planning of transoceanic flights in coordination with World Area Forecast Centers (WAFC)
- Increasing skill and continuity of 1–4 hour forecasts of VIL and echo tops by using new blending methods combining numerical weather model and extrapolation forecasts
- Refining techniques to improve the 0–6 hour prediction of convective initiation critical for NAS planning and operations
- Identified potential opportunities and key shortfalls associated with improved lightning threat awareness for airport operations

Collaborative work with FAA flight safety

High Ice Water Content (HIWC)

- Characterization of (HIWC) ice crystal environments that can be a threat to turbine engines
- Diagnosis and forecasting of HIWC ice crystal environments
- Assess and evaluate flight campaign data to determine modified current generation radar and new generation radar performance relative to avoidance of HIWC conditions ahead

Terminal Area Icing Weather Information for NextGen (TAIWIN)

- Responds to operational needs new SLD Rule 25.1420 and NextGen capacity and throughput requirements in freezing precipitation
- Develop capability/technology to manage impact of new certification SLD rule on terminal area operations; research on automated reporting systems and improved weather diagnostic/forecast tools
- Flight campaign to acquire data from ground sensors, dual pol radar, numerical wx prediction models, and weather satellites

Aviation Weather Demonstration and Evaluation Services (AWDE)

- Core capability providing aviation weather demonstration and evaluation services
- Supports program managers with data to reduce programmatic risks, aids in the definition and validation of requirements
- Provides a laboratory capability to perform HITLs and other technical evaluations, often in collaboration with Aviation Weather Center Testbed
- Provides access to SMEs in Human Factors, Engineering, Meteorology, Computer Science and Aviation Users
- Integral role with AWC on Summer Experiment in August

UAS Weather Research

- Currently, there is little understanding about weather information that would be most beneficial to support safe and efficient UAS operations.
- This research will provide a better understanding of:
 - Weather information and capabilities that would be most beneficial for UAS operations
 - Research that is needed to refine existing weather products for UAS operations
 - New weather capabilities that should be developed for UAS operations
- Research performers:
 - MIT/LL

Research Questions

- What weather products and information are most beneficial to support safe and efficient UAS operations?
- What are UAS operators currently using for weather information, and how are decisions made?
- Should prioritized attention be given to larger UAS/UAV that will require integration of UAS and manned aircraft in the NAS, as compared to smaller UAV classes (1-5 pounds, and 5-55 pounds) which are typically standalone and restricted to Class G airspace)?
- How should weather use cases be prioritized? (Safety, impact on ATC operations, economic impact, government & military verses civilian)
- Focus on the current or future operating environment?

Research Approach

- Task 1 Identify UAS Weather Stakeholders
- Task 2 Build Catalog of UAS Types, Mission Types, and Weather Considerations
- Task 3 Develop UAS Weather Use Cases
- Task 4 Establish Preliminary User Needs for Weather Information to Support Safe and Efficient UAS Operations
- Task 5 Identify Weather Information Gaps for UAS Operations
- Task 6 Develop Proposed Research Roadmap

Schedule of Deliverables

Deliverable	Completion Date/ Due Date
✓ Identification of UAS Wx stakeholders	03/04/16
✓ Catalog of UAS types, mission types, and weather considerations	03/31/16
✓ Prioritized catalog of UAS weather use cases	05/31/16
Analysis on weather impacts and preliminary user needs	Aug 2016
Analysis on UAS weather capability gaps	Nov 2016
Research roadmap for weather product development	Dec 2016

UAS Weather Catalog

Mission catalog

- Identified specific missions, which comprise 6 general flight categories, i.e. altitude and trajectory
- Identified missions span all 5 UAV weight/size classes

			UAS Class			
		1	2	3	4	5
Mission Class	Specific Mission	0-20 lbs, < 1200 ft. AGL, < 100 mph	21-55 lbs, < 3500 ft. AGL, < 250 mph	< 1320 lbs, < FL 180, < 250 mph	> 1320 lbs, < FL 180, any speed	> 1320 lbs, > FL 180 any speed
	Bridge and Structure Inspection					
Low Altitude Hover	Accident Scene Investigation					
	Aerial Photography					
	Media / Cinematography					
	Power Production Inspection					
	Agriculture (Crop Monitoring/ Management)					
	Agriculture (Aerial Application)					
Low Altitude Loiter	Search and Rescue					
	Traffic Monitoring					
	Snowpack Monitoring					
	Law Enforcement					
	Surveying and Mapping					
Mid Altitude Loiter	Border Patrol					
	Environmental Research/Sampling					
High Altitude Loiter	Maritime Surveillance					
	Communications (TV/Telephone/ Broadband)					
	Transportation Infrastructure Inspection					
	Oil & Gas Pipeline/Platform Monitoring					
Low Altitude Point-to-Point	Power Distribution Inspection					
LOW AIRCONC OHIC TO OHIC	Medical Sample Transport					
	Package Delivery					
High Altitude Point-to-Point	Cargo					
	Oceanic Cargo					

Survey Responses

Use	Mission Class	Mission Type	Survey
Code	e		Responses
L1	Low Altitude Hover	Accident/News Scene	2
	(0-500 ft / 0-1 hr / 0-3 mi)	Investigation	
		Aerial Photography / Imaging	34
		Agriculture (Crop	2
		Bridge and Structure	7
		Media / Cinematography	5
		Research & Development	6
		Search and Rescue	1
		Survey and Mapping	18
L2	Low Altitude Loiter	Agriculture (Crop	1
	(0-500 ft / 0-1 hr / 3-25 mi)	Management)	
L3	Low Altitude Point-to-Point	Package Delivery	1
	(0-500 ft / 1-12 hr / 3-25 mi)	Sensing	1
		Surveillance / Reconnaissance	3
L4	Low Altitude Point-to-Point (0-500 ft / 1-12 hr / 25+ mi)	Railway Monitoring	1
M1	Mid Altitude Loiter	Border Patrol	2
	(500 - FL250 / 1-12 hr / 25+ mi)	Research & Development	1
		Survey and Mapping	2
H1	High Altitude Point-to-Point	No survey responses	0
	(FL250+ / 1-12 hr / 25+ mi)		
H2	High Altitude Loiter	Maritime Surveillance	1
	(FL250+ / 12+ hr / 25+ mi)		

Use Case Selection

Use Case	Mission Class
Surveying and Mapping	(L1) Low Altitude Hover
	(0-500 ft / 0-1 hr / 0-3 mi)
Agriculture (Crop Monitoring/	(L2) Low Altitude Loiter
Management)	(0-500 ft / 0-1 hr / 3-25 mi)
Package Delivery	(L3) Low Altitude Point-to-Point
	(0-500 ft / 1-12 hr / 3-25 mi)
Transportation Infrastructure	(L4) Low Altitude Point-to-Point
Inspection	(0-500 ft / 1-12 hr / 25+ mi)
Border Patrol	(M1) Mid Altitude Loiter
	(500 - FL250 / 1-12 hr / 25+ mi)
Cargo	(H1) High Altitude Point-to-Point
	(FL250+ / 1-12 hr / 25+ mi)
Maritime Surveillance	(H2) High Altitude Loiter
iviantime surveillance	(FL250+ / 12+ hr / 25+ mi)

Selection Criteria:

- Survey responses
- FAA Pathfinder representation
 - CNN
 - PrecisionHawk
 - BNSF Railway
- Alignment with FAA UAS ConOps

Upcoming Activities

- Preliminary User Needs for Weather Information to Support Safe and Efficient UAS Operations – August 2016
- Identify Weather Information Gaps for UAS Operations November 2016
- Develop Proposed Research Roadmap December 2016

Challenges

- Uncertainty—Complex challenges need to be better clarified regarding not only uncertainty attributes of weather products but also the ability of NAS/UAS decision makers to apply uncertainty information.
- The Limits of the Science Realistically how good can we forecast within UAS operational paradigms. How good is good enough?
- Integration—translated weather information into decisions and decision support tools

Thanks for your support!

steve.abelman@faa.gov

